(1)用两根长度均为㎝的绳子,分别围成正方形和圆,如图所示,如果要使正方形的面积不大于25cm2,那么绳长应满足怎样的关系式.(2)如果要使圆的面积大于100cm2,那么绳长应满足怎样的关系式?(3)当=8㎝时,正方形和圆那个面积大?
市园林处为了对一段公路进行绿化,计划购买A、B两种风景树共900棵。若购买A树x棵,所需总费用y元. B两种树的相关信息如下表:A、求y与x之间的函数关系式.若购树的总费用不超过82000元,则购A种树不少于多少棵?若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A、B两种树各多少棵?此时最低费用为多少?
如图: 在△AEB和△ADC中,给出以下四个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)AD⊥DC,AE⊥BE.以其中三个论断为题设,填入下面的“已知”栏中,一个论断为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程。如图,在△AEB和△ADC中,已知:______________.求证: _______.证明:
在一个透明的袋子里,装有相同的四个小球,其上面分别标有数字-1,1,2,3.现从中任意摸出一个小球,将上面的数字作为点A的横坐标,不放回再从中摸出一个小球,将其上面的数字作为A点的纵坐标.用树状图或列表法写出A点坐标的所有可能性;求点A在直线上的概率;求点A的横坐标、纵坐标之和是偶数的概率.
如图:在直角坐标系中,线段OA=6cm,OA与y轴的夹角为30º.将线段OA绕原点按逆时针方向旋转到轴的负半轴上,得到线段OB. 点A经过的路径是一条____(填“线段”或“弧”),并求出此“路径”的长度; 求线段OA转到OB位置时,OA所“扫描” 过的图形的面积.
计算:解不等式组: ,并把解集在数轴上表示出来