在平面直角坐标系中,以(3,0)为圆心,2为半径画圆,求圆与坐标轴交点坐标。
先化简,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.
27.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.
如图,已知△ABC,(1)根据要求作图,在边BC上求作一点D,使得点D到点A、B的距离相等,在边AB上求作一点E,使得点E到A、D的距离相等;(不要求写作法,但需要保留作图痕迹和结论)(2)在第(1)小题所作的图中,求证:DE∥AC.
已知:如图,有一块四边形土地ABCD,∠ADC=90°,AD=8m,CD=6m,AB=26m,BC=24m,求这块土地的面积S.
如图所示,在△ABC中,CD是AB上的中线,且DA=DB=DC.(1)已知∠A=30°,求∠ACB的度数;(2)已知∠A=40°,求∠ACB的度数;(3)已知∠A=x°,求∠ACB的度数;(4)请你根据解题结果归纳出一个结论.