当m为何值时,关于
如图,山顶上有一个信号塔 AC ,已知信号塔高 AC = 15 米,在山脚下点 B 处测得塔底 C 的仰角 ∠ CBD = 36 . 9 ° ,塔顶 A 的仰角 ∠ ABD = 42 . 0 ° ,求山高 CD (点 A , C , D 在同一条竖直线上).
(参考数据: tan 36 . 9 ° ≈ 0 . 75 , sin 36 . 9 ° ≈ 0 . 60 , tan 42 . 0 ° ≈ 0 . 90 . )
观察以下等式:
第1个等式: 1 3 × ( 1 + 2 1 ) = 2 - 1 1 ,
第2个等式: 3 4 × ( 1 + 2 2 ) = 2 - 1 2 ,
第3个等式: 5 5 × ( 1 + 2 3 ) = 2 - 1 3 ,
第4个等式: 7 6 × ( 1 + 2 4 ) = 2 - 1 4 .
第5个等式: 9 7 × ( 1 + 2 5 ) = 2 - 1 5 .
…
按照以上规律,解决下列问题:
(1)写出第6个等式: 11 8 × ( 1 + 2 6 ) = 2 - 1 6 ;
(2)写出你猜想的第 n 个等式: (用含 n 的等式表示),并证明.
如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段 AB ,线段 MN 在网格线上.
(1)画出线段 AB 关于线段 MN 所在直线对称的线段 A 1 B 1 (点 A 1 , B 1 分别为 A , B 的对应点);
(2)将线段 B 1 A 1 绕点 B 1 顺时针旋转 90 ° 得到线段 B 1 A 2 ,画出线段 B 1 A 2 .
解不等式: 2 x - 1 2 > 1 .
已知直线 l 1 : y = - 2 x + 10 交 y 轴于点 A ,交 x 轴于点 B ,二次函数的图象过 A , B 两点,交 x 轴于另一点 C , BC = 4 ,且对于该二次函数图象上的任意两点 P 1 ( x 1 , y 1 ) , P 2 ( x 2 , y 2 ) ,当 x 1 > x 2 ⩾ 5 时,总有 y 1 > y 2 .
(1)求二次函数的表达式;
(2)若直线 l 2 : y = mx + n ( n ≠ 10 ) ,求证:当 m = - 2 时, l 2 / / l 1 ;
(3) E 为线段 BC 上不与端点重合的点,直线 l 3 : y = - 2 x + q 过点 C 且交直线 AE 于点 F ,求 ΔABE 与 ΔCEF 面积之和的最小值.