已知关于x的二次函数与,这两个二次函数的图象中的一条与x轴交于A,B两个不同的点.(1)试判断哪个二次函数的图象可能经过A,B两点;(2)若A点坐标为(-1,0),试求出B点坐标;(3)在(2)的条件下,对于经过A,B两点的二次函数,当x取何值时, y的值随x值的增大而减小.
用四块长为acm、宽为bcm的矩形材料(如图1)拼成一个大矩形(如图2)或大正方形(如图3),中间分别空出一个小矩形A和一个小正方形B. (1)求(如图1)矩形材料的面积;(用含a,b的代数式表示) (2)通过计算说明A、B的面积哪一个比较大; (3)根据(如图4),利用面积的不同表示方法写出一个代数恒等式.
如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.
已知x+y=4,xy=-12,求(1)x2+y2的值;(2)求(x-y)2的值.
先化简,后求值:已知:[(x-2y)2-2y(2y-x)]÷2,其中x=1,y=2.
(1)解方程:3x2-27=0 (2)已知22x+1+4x=48,求x的值.