(1)情景一:如图(1)中AC=40m,CB=30m,从教室楼到宿舍楼,总有少数同学不走人行道AC和BC,而直接横穿草坪(即从A到B),你认为他们这样走,近了多少米?说明理由.(2)情景二:M、N是河流l旁的两个村庄,现要在河边修一个抽水站向M、N村供水,问抽水站修在什么地方才能使所需的管道最短?请在图(2)中画出抽水站点P的位置.(保留作图痕迹,不写作法)(3)数学知识来源于生活并且用来为人们服务,上面两个情景你赞同哪一个?你有何感想?(简要说明)
如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=1200,求证(1)△ACP∽△PDB,(2)
如图在正方形ABCD中,E是CD上一点,F是CB延长线上一点,且DE=BF,AF,AE之间有怎样的关系?请说明理由。
如图,△ABC为直角三角形,∠ACB=90°,CD⊥AB于D, (1)找出图中所有的相似三角形,分别是 ; (2)求证:
某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率.
甲、乙两同学只有一张乒乓球比赛的门票,谁都想去,最后商定通过转盘游戏决定.游戏规则是:转动下面平均分成三个扇形且标有不同颜色的转盘,转盘连续转动两次,若指针前后所指颜色相同,则甲去;否则乙去.(如果指针恰好停在分割线上,那么重转一次,直到指针指向一种颜色为止)(1)转盘连续转动两次,指针所指颜色共有几种情况?通过画树状图或列表法加以说明;(2)你认为这个游戏公平吗?请说明理由.