(1)情景一:如图(1)中AC=40m,CB=30m,从教室楼到宿舍楼,总有少数同学不走人行道AC和BC,而直接横穿草坪(即从A到B),你认为他们这样走,近了多少米?说明理由.(2)情景二:M、N是河流l旁的两个村庄,现要在河边修一个抽水站向M、N村供水,问抽水站修在什么地方才能使所需的管道最短?请在图(2)中画出抽水站点P的位置.(保留作图痕迹,不写作法)(3)数学知识来源于生活并且用来为人们服务,上面两个情景你赞同哪一个?你有何感想?(简要说明)
如图9,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO= (1)求这个二次函数的表达式. (2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由. (3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度. (4)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件. (1)求打包成件的帐篷和食品各多少件? (2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来. (3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?
如图8,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO. (1)求证:BD是⊙O的切线. (2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=,求△ACF的面积.
某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图6和图7所示的统计图.根据图中信息解答下列问题: (1)哪一种品牌粽子的销售量最大? (2)补全图6中的条形统计图. (3)写出A品牌粽子在图7中所对应的圆心角的度数. (4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货? 请你提一条合理化的建议.
如图5,在梯形ABCD中,AB∥DC, DB平分∠ADC,过点A作AE∥BD,交CD的 延长线于点E,且∠C=2∠E. (1)求证:梯形ABCD是等腰梯形. (2)若∠BDC=30°,AD=5,求CD的长.