某公司向银行贷款万元,用来生产某种产品,已知该贷款的利率为(不计复利,即还贷款前两年利息不计算),每个新产品的成本是元,售价是元,应纳税款是销售额的,如果每年生产该种产品万个,并把所得利润(利润=销售额-成本-应纳税款)用来归还贷款,问需要几年后才能一次性还清?
已知,在平面直角坐标系中,A(a,0)、B(0,b),a、b满足+|a−3|=0.C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E. (1)求∠OAB的度数; (2)设AB=6,当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE的值; (3)设AB=6,若∠OPD=45°,求点D的坐标.
如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE. (1)求证:AF=BE; (2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF. (1)求证:四边形BCFE是菱形; (2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF. (1)线段BD与CD有什么数量关系,并说明理由; (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
如图正方形网格中的△ABC,若小方格边长为1,请你根据所学的知 (1)求△ABC的面积 (2)判断△ABC是什么形状? 并说明理由.