已知,关于x的一元二次方程() (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为(其中)。若y是关于m的函数,且,求这个函数的解析式;
计算与化简:(1)(2)20122-2011×2013(3)
如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.(1)求该抛物线的解析式; (2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大;(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P的坐标;若不存在,请说明理由.
如图,平面直角坐标系中,直线y=-x+8分别交x轴、y轴于点B、点A,点D从点A出发沿射线AB方向以每秒1个单位长的速度匀速运动,同时点E从点B出发沿射线BC方向以每秒个单位长的速度匀速运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥AO于点F,连接DE、EF.(1)当t为何值时,△BDE与△BAO相似;(2)写出以点D、F、E、O为顶点的四边形面积s与运动时间t之间的函数关系;(3)是否存在这样一个时刻,此时以点D、F、E、B为顶点的四边形是菱形,如果存在,求出相应的t的值;如果不存在,请说明理由.
如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O.(1)△ABF≌△CAE;(2)HD平分∠AHC吗?为什么?
在一个布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.(1)闭上眼睛随机地从袋中取出1只球,求取出的球是黑球的概率;(2)若取出的第1只球是红球,将它放在桌上,闭上眼睛从袋中余下的球中再随机地取出1只球,这时取出的球还是红球的概率是多少?(3)若取出一只球,将它放回袋中,闭上眼睛从袋中再随机地取出1只球,两次取出的球都是白球概率是多少?(用列表法或树状图法计算)