为落实素质教育要求,促进学生全面发展,我市某中学2010年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2012年投资18.59万元。(1)求该学校为新增电脑投资的年平均增长率;(2)从2010年到2012年,该中学三年为新增电脑共投资多少万元?
已知:⊙O的半径OA=5,弦AB=8,C是弦AB的中点,点P是射线AO上一点(与点A不重合),直线PC与射线BO交于点D. (1)当点P在⊙O上,求OD的长. (2)若点P在AO的延长线上,设OP=x,,求y与x的函数关系式并写出自变量x 的取值范围。 (3)连接CO,若△PCO与△PCA相似,求此时BD的长。
如图,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外侧作Rt△ABE和Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q, (1)若Rt△ABE和Rt△ACF都是等腰三角形,直接写出EP与FQ有怎样的数量关系; (2)若Rt△ABE和Rt△ACF中满足AB=" k" AE,AC=" k" AF时,(1)中的结论还成立吗?若成立,请证明;若不成立,请探究EP与FQ有怎样的数量关系? (3)若Rt△ABE和Rt△ACF中满足AB=" k" AE,AC= mAF时,联结EF交射线GA于点D,试探究ED与FD有怎样的数量关系?
如图,已知直线l经过点A(1,0),与双曲线y=(x>0)交于点B(2,1).过点P(a,a-1) (a>1)作x轴的平行线分别交双曲线y=(x>0)和y=-(x<0)于点M、N. (1)求m的值和直线l的解析式; (2)若点P在直线y=2上,求证:△PMB∽△PNA.
伦敦奥运会将于2012年7月27日开幕,组委会备选的开幕式甲、乙两支仪仗队队员的身高(单位:厘米)如下: 甲队:178,177,179,178,177,178,177,179,178,179; 乙队:178,179,176,178,180,178,176,178,177,180; (1)将下表填完整:
(2)甲队队员身高的平均数为厘米,乙队队员身高的平均数为厘米; (3)你认为哪支仪仗队更为整齐?简要说明理由.
平行四边形ABCD中,AB=5,AD=8,∠C、∠D的平分线分别交 AD、BC与点E、F,且AF⊥BC. (1)求tan∠ADF; (2)求CE的长.