已知梯形中,∥,,,、分别是、上的点,∥,,是的中点.沿将梯形翻折,使平面⊥平面 (如图).(I)当时,求证: ;(II)若以、、、为顶点的三棱锥的体积记为,求的最大值;(III)当取得最大值时,求二面角的余弦值.
(本小题共14分) 在单调递增数列中,,不等式对任意都成立. (Ⅰ)求的取值范围; (Ⅱ)判断数列能否为等比数列?说明理由; (Ⅲ)设,,求证:对任意的,.
(本小题共14分) 已知椭圆C:,左焦点,且离心率 (Ⅰ)求椭圆C的方程; (Ⅱ)若直线与椭圆C交于不同的两点(不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A.求证:直线过定点,并求出定点的坐标.
(本小题共13分) 已知函数(). (Ⅰ)求函数的单调区间; (Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。
(本小题共13分) 数列{}中,,,且满足 (1)求数列的通项公式; (2)设,求.
(本小题共13分) 如图所示,正方形与矩形所在平面互相垂直,,点E为的中点。 (Ⅰ)求证: (Ⅱ)求证: (Ⅲ)在线段AB上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由。