已知梯形中,∥,,,、分别是、上的点,∥,,是的中点.沿将梯形翻折,使平面⊥平面 (如图).(I)当时,求证: ;(II)若以、、、为顶点的三棱锥的体积记为,求的最大值;(III)当取得最大值时,求二面角的余弦值.
椭圆的离心率为,长轴端点A与短轴端点B间的距离为.(1)求椭圆的方程;(2)P为椭圆上一动点,求的面积的最大值。
在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线L的直角坐标方程为,且点A在直线L上.(1)求的值;(2)圆C的参数方程为,(为参数),试判断直线L与圆C的位置关系并说明理由.
已知函数 且此函数图象过点(1,5).(1)求实数m的值;(2)判断在上的单调性,并证明你的结论。
命题: ; 命题不等式对恒成立。如果命题为真,求实数的取值范围.
某校高二年级的一次数学考试中,为了分析学生的得分情况,随机抽取名同学的成绩,数据的分组统计表如下:
(1)求出表中的值;(2)为了了解某些同学在数学学习中存在的问题,现从样本中分数在中的6位同学中任意抽取2人进行调查,求分数在和中各有一人的概率.