设是实数,,试证明:对于任意在上为增函数.
已知函数的图象的一部分如下图所示.(1)求函数的解析式;(2)当时,求函数的最大值与最小值及相应的的值.
(本小题满分14分)设函数。(I)求函数单调区间;(II)若恒成立,求a的取值范围;(III)对任意n的个正整数(1) 求证:(2)求证:
(本小题满分13分)在数列(I)若是公比为β的等比数列,求α和β的值。(II)若,基于事实:如果d是a和b的公约数,那么d一定是a-b的约数。研讨是否存在正整数k和n,使得有大于1的公约数,如果存在求出k和n,如果不存在请说明理由。
(本小题满分12分)已知点是椭圆上任意一点,直线的方程为(I)判断直线与椭圆E交点的个数;(II)直线过P点与直线垂直,点M(-1,0)关于直线的对称点为N,直线PN恒过一定点G,求点G的坐标。
如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,(I)证明:C,D,F,E四点共面;(II)设AB=BC=BE,求二面角A—ED—B的大小。