从n边形的一个顶点出发,最多可以引多少条条对角线?请你总结一下n边形共有多少条对角线.
如图,平行四边形ABCD中,,点的坐标是,以点为顶点的抛物线经过轴上的点.(1)求点的坐标;(2)若抛物线向上平移后恰好经过点,求平移后抛物线的解析式.
如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0, 3)。(1)求抛物线的解析式;(2)若点P为抛物线在第二象限上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。
如图,抛物线的顶点为D(﹣1,4),与轴交于点C(0,3),与轴交于A,B两点(点A在点B的左侧)。(1)求抛物线的解析式;(2)连接AC,CD,AD,试证明△ACD为直角三角形;(3)若点E在抛物线上,EF⊥x轴于点F,以A、E、F为顶点的三角形与△ACD相似,试求出所有满足条件的点E的坐标。
某山区的一种特产由于运输原因,长期只能在当地销售,当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=(万元)。当地政府拟规划加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出60万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售。在外地销售的投资收益为:每投入万元,可获利润Q=(万元)。(1)若不进行开发,求5年所获利润的最大值是多少?(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?(3)根据(1)、(2),该方案是否具有实施价值?
如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式。已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围);(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求二次函数中二次项系数a的最大值。