(本小题满分12分)已知函数.().(1)当时,求函数的极值;(2)若对,有成立,求实数的取值范围.
已知是方程的一个根(为实数).(1)求的值;(2)试说明也是方程的根.
某车间加工零件的数量与加工时间的统计数据如表:
现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )A.112分钟 B.102分钟 C.94分钟 D.84分钟
已知函数.(1)若,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求正实数的取值范围;(3)设函数,若在上至少存在一点,使得>成立,求实数的取值范围.
请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,在上是被切去的等腰直角三角形斜边的两个端点,设.(1)若广告商要求包装盒侧面积最大,试问应取何值?(2)若广告商要求包装盒容积最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.
已知为偶函数,曲线过点, .(1)若曲线有斜率为0的切线,求实数的取值范围;(2)若当时函数取得极值,确定的单调区间.