如图,在△OAB中,O为坐标原点,横、纵轴的单位长度相同,A、B的坐标分别为(8,6),(16,0),点P沿OA边从点O开始向终点A运动,速度每秒1个单位,点Q沿BO边从B点开始向终点O运动,速度每秒2个单位,如果P、Q同时出发,用t(秒)表示移动时间,当这两点中有一点到达自己的终点时,另一点也停止运动。求(1)几秒时PQ∥AB (2)设△OPQ的面积为y,求y与t的函数关系式 (3)△OPQ与△OAB能否相似,若能,求出点P的坐标,若不能,试说明理由
已知,如图,在△中,,边的垂直平分线交于点,交于点,,△的周长为,求的长.
如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称都可以得到△. (1)△沿x轴向右平移得到△,则平移的距离是 个单位长度;△与△关于直线对称,则对称轴是 ; (2)连结AD,交OC于点E,求∠AEO的度数.
已知,求的值.
已知:如图,AE是△ABC外角的平分线,且AE∥BC. 求证:△是等腰三角形。
计算: (1) (2); (3) (4)