某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.下图是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少 ?
如图,已知在△ABC中,∠B与∠C的平分线交于点P. (1)当∠A=70°时,求∠BPC的度数; (2)当∠A=112°时,求∠BPC的度数; (3)当∠A=时,求∠BPC的度数.
如图,△ABC的两条高AD、BE相交于点H,且AD=BD,试说明下列结论成立的理由。(1)∠DBH=∠DAC;(2)△BDH≌△ADC.
如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE="2" cm,BD="3" cm,求线段BC的长.
如图,已知△ABC. (1)用直尺和圆规作角平分线AD. (2)用刻度尺作中线CE.
如图,在直角坐标系中,以点A(,0 )为圆心,以2为半径的圆与x轴相交于点B、C,与y轴相交于点D、E (1)若抛物线经过C、D两点,求抛物线的表达式,并判断点B是否在该抛物线上 (2)在(1)中的抛物线的对称轴上求一点P,使得△PBD的周长最小 (3)设Q为(1)中的抛物线对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形,若存在,求出点M的坐标;若不存在,说明理由