已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.
某班准备到郊外野营,为此向商店订了帐篷.如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的试用树状图表示该班同学所有可能遇到的结果;求该班同学这天不会被雨淋的概率.
某校九年级一班数学调研考试成绩绘制成频数分布直方图,如图(得分取整数).请根据所给信息解答下列问题:这个班有多少人参加了本次数学调研考试?~分数段的频数和频率各是多少?请你根据统计图,提出一个与(1),(2)不同的问题,并给出解答.
如图1,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=12cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以2cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.求∠OAB的度数以OB为直径的⊙O′与AB交于点M,当t为何值时,PM与⊙O′相切?是否存在△RPQ为等腰三角形?若存在,请直接写出t值;若不存在,请说明理由.
某地为促进特种水产养殖业的发展,决定对甲鱼和黄鳝的养殖提供政府补贴.该地某农户在改建的10个1亩大小的水池里分别养殖甲鱼和黄鳝,因资金有限,投入不能超过14万元,并希望获得不低于10.8万元的收益,相关信息如下表所示:
根据以上信息,该农户可以怎样安排养殖应怎样安排养殖,可获得最大收益?(收益=毛利润-成本+政府补贴)据市场调查,在养殖成本不变的情况下,黄鳝的毛利润相对稳定,而每亩甲鱼的毛利润将减少m万元.问该农户又该如何安排养殖,才可获得最大收益?
请阅读材料并填空:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1.求∠BPC的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连结PP′.根据李明同学的思路,进一步思考后可求得∠BPC=____°,等边△ABC的边长为____.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC的度数和正方形ABCD的边长.