在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.
(本题8分)已知二次函数的图象与轴两交点的坐标分别为(,0),(,0)().(1)证明;(2)若该函数图象的对称轴为直线,试求二次函数的最小值.
(本题8分) 在国家的宏观调控下,某市的商品房成交价由今年7月份的14000元/下降到9月份的12600元/⑴求8、9两月平均每月降价的百分率是多少?(参考数据:)⑵如果房价继续回落,按此降价的百分率,你预测到11月份该市的商品房成交均价是否会跌破10000元/?请说明理由。
(本题8分) 已知:抛物线与x轴相交于A、B两点(A点在B点的左侧),顶点为P.(1)求A、B、P三点坐标;(2)画出此抛物线的简图,并根据简图直接写出当时,函数值y的取值范围;
(本题8分)关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围.(2)请选择一个k的负整数值,并求出方程的根.
(每小题6分,共18分)解下列方程:① ② ③