在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.
(10分) 如图,已知二次函数y=ax2+bx+c的图像过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图像与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.
如图,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高米的小区超市,超市以上是居民住房,在该楼的前面米处要盖一栋高米的新楼.当冬季正午的阳光与水平线的夹角为时.()问超市以上的居民住房采光是否有影响,为什么?()若要使超市采光不受影响,两楼应相距多少米?(参考数据:sin≈,cos≈≈.)
某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000名九年级考生中随机抽取部分考生的数学成绩进行调查,并将调查结果绘制成如下图表:
(1)表中a和b所表示的数分别为a= ,b= ; (2)请在图中补全频数分布直方图; (3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的考生约有多少名?
在一个不透明的布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各只,甲、乙两人进行摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,问谁在游戏中获胜的可能性更大些?
(1)计算:3sin30°-2cos45°+tan2600;(2)在Rt△ABC中,∠C=90° , c=20,∠A=30° , 解这个直角三角形.