两组邻边分别相等的四边形我们称它为菱形.如图,在菱形中,,,,相交于点,(1)求证:①;②,;(2)如果,,求菱形的面积.
如图,在四边形ABCD中,对角线AC,BD相交于点O,且AC⊥BD,点E,F,G,H分别是AB,BC,CD,DA的中点,依次连接各边中点得到四边形EFGH,求证:四边形EFGH是矩形.
写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图, .求证: .证明:
解不等式,并把解集在数轴上表示出来.
如图(1),抛物线与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).(1)求此抛物线的解析式;(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.
如图(1),E是正方形ABCD的边BC上的一个点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)连接CF,如图(2),求证:CF平分∠DCG;(3)当时,求sin∠CFE的值.