每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图所示. (1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形,请画出菱形,并直接写出点B1的坐标; (2)将菱形OABC绕原点O顺时针旋转90º,得到菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B旋转到B2的路径长.
如图,经过点A(0,-6)的抛物线y=x2+bx+c与x轴相交于B(-2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,直接写出AM的长.
某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题: (1)填空:乙的速度v2= 米/分; (2)写出d1与t的函数关系式: (3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?
某中学举行了“班班有歌声”活动,某校比赛聘请了10位老师和10位学生担任评委,其中甲班的得分情况如统计图(表)所示. 老师评分统计表格:
(1)在频数分布直方图中,自左向右第四组的频数为 ; (2)学生评委计分的中位数是 分; (3)计分办法规定:老师、学生评委的计分各去掉一个最高分、一个最低分,分别计算平均分,并且按老师、学生各占60%、40%的方法计算各班最后得分.已知甲班最后得分为94.4分,求统计表中x的值.
如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.
已知x=2是关于x的一元二次方程x2+3x+m-2=0的一个根.(1)求m的值及方程的另一个根;(2)若7-x≥1+m(x-3),求x的取值范围.