(满分14分)设函数.若方程的根为0和2,且.(1). 求函数的解析式;(2) 已知各项均不为零的数列满足:为该数列的前n项和),求该数列的通项;(3)如果数列满足.求证:当时,恒有成立.
(本小题满分12分)求适合下列条件的圆锥曲线方程:(1).长轴长是短轴长的3倍,经过点(3,0)的椭圆标准方程。(2).已知双曲线两个焦点的坐标为,双曲线上一点P到两焦点的距离之差的绝对值等于6,求双曲线标准方程.(3).已知抛物线的顶点在原点,准线与其平行线x=2的距离为3,求抛物线标准方程.
(本小题满分12分) 已知命题,命题 ,若是的必要不充分条件,求实数的取值范围。
已知函数(1)写出函数的单调递减区间;(2)设,的最小值是,最大值是,求实数的值.
已知△ABC的内角满足,若,且满足:,,为的夹角.求。
求值: