已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.
已知定义在R上的函数和数列满足下列条件:,,其中a为常数,k为非零常数. (Ⅰ)令,证明数列是等比数列; (Ⅱ)求数列的通项公式; (III)当时,求.
数列{an}的前n项和为Sn,且a1=1,,n=1,2,3,……,求 (I)a2,a3,a4的值及数列{an}的通项公式; (II)的值.
已知{}是公比为q的等比数列,且成等差数列. (Ⅰ)求q的值; (Ⅱ)设{}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由. .
设数列{an}的首项a1=a≠,且, 记,n==l,2,3,…·. (I)求a2,a3; (II)判断数列{bn}是否为等比数列,并证明你的结论; (III)求
已知展开式中的二项式系数的和比展开式的二项式系数的和大,求展开式中的系数最大的项和系数量小的项.