有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计)。有人应用数学知识作如下设计:在钢板的四个角处各切去一个全等的小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长。(1)请你求出这种切割、焊接而成的长方体容器的最大容积;(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积。
设全集为,集合,. (1)求如图阴影部分表示的集合; (2)已知,若,求实数的取值范围.
已知直线经过直线与直线的交点,且垂直于直线. (1)求直线的方程; (2)求直线关于原点对称的直线方程.
已知函数(其中且),是的反函数. (1)已知关于的方程在上有实数解,求实数的取值范围; (2)当时,讨论函数的奇偶性和单调性; (3)当,时,关于的方程有三个不同的实数解,求的取值范围.
某工厂某种航空产品的年固定成本为万元,每生产件,需另投入成本为,当年产量不足件时,(万元).当年产量不小于件时,(万元).每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润(万元)关于年产量(件)的函数解析式; (2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?
已知幂函数()在是单调减函数,且为偶函数. (1)求的解析式; (2)讨论的奇偶性,并说明理由.