已知函数()是奇函数,有最大值且.(1)求函数的解析式;(2)是否存在直线与的图象交于P、Q两点,并且使得、两点关于点 对称,若存在,求出直线的方程,若不存在,说明理由.
已知中心在原点,顶点在轴上,离心率为的双曲线经过点(I)求双曲线的方程;(II)动直线经过的重心,与双曲线交于不同的两点,问是否存在直线使平分线段。试证明你的结论
已知抛物线与直线(1) 求证:抛物线与直线相交;(2) 求当抛物线的顶点在直线的下方时,的取值范围;(3) 当在的取值范围内时,求抛物线截直线所得弦长的最小值。
如图, 已知线段在直线上移动, 为原点. , 动点满足.(Ⅰ) 求动点的轨迹方程;(Ⅱ) 当时, 动点的轨迹与直线交于两点(点在点的下方), 且, 求直线的方程.
半径为R的圆过原点O, 圆与x轴的另一个交点为A, 构造平行四边形OABC, 其中BC为圆在x轴上方的一条切线, C为切点, 当圆心运动时, 求B点的轨迹方程.
在对人们饮食习惯的一次调查中,共调查了124人,其中六十岁以上的70人,六十岁以下的54人,六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.(1)根据以上数据建立一个2×2的列联表;(2)判断人的饮食习惯是否与年龄有关,并做简要分析.