已知函数(为实数)有极值,且在处的切线与直线平行.(1)求实数的取值范围;(2)是否存在实数,使得函数的极小值为,若存在,求出实数的值;若不存在,请说明理由;(3)设,的导数为,令求证:
已知函数的图象经过点. (1)求的值; (2)求在点处的切线方程.
已知椭圆中心在原点,焦点在x轴上,离心率e=,它与直线x+y+1=0交于P、Q两点,若OP⊥OQ,求椭圆方程。(O为原点)。
已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e= (1)求椭圆方程; (2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2。
某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增. (Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式; (Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少)。
已知数列是一个等差数列,且,。 (Ⅰ)求的通项; (Ⅱ)求前n项和的最大值.