如图,AD是ABC的高,点P,Q在BC边上,点R在AC边上,点S在AB边上,BC=60cm,AD=40cm,AB=AC.四边形PQRS是正方形。(1)ASR与ABC相似吗?为什么?(2)求正方形PQRS的边长。
如图,正方形网格中,每一个小正方形的边长都是,四边形的四个顶点都在格点上,为边的中点,若把四边形绕着点顺时针旋转.画出四边形旋转后的图形;设点旋转后的对应点为,则 ;求点在旋转过程中所经过的路径长.
为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A、B两组捐款户数的比为1 : 5.请结合以上信息解答下列问题.a= ,本次调查样本的容量是 ;先求出C组的户数,再补全“捐款户数分组统计图1”;若该社区有500户住户,请根据以上信息估计,全社区捐款不少于300元的户数是多少?
如图,已知抛物线的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.求该抛物线的函数关系式;求点P在运动的过程中,线段PD的最大值;当△ADP是直角三角形时,求点P的坐标;在题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A1B1C.如图1,当AB∥CB1时,设A1B1与BC相交于点D.证明:△A1CD是等边三角形;如图2,连接AA1、BB1,若△ACA1的面积为S,求△BCB1的面积如图3,设AC的中点为E,A1B1的中点为P,AC=a,连接EP.求EP的长度最大时∠的度数,并求出此时EP的最大值.
如图,在平面直角坐标系中,直线L:y=-2x-8分别与x轴、y轴相交于A、B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.连结PA,若∠PAB=∠PBA,试判断⊙P与X轴的位置关系,并说明理由;当K为何值时,以⊙P与直线L的两个交点和圆心P为顶点的三角形是正三角形?