某校高二(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.(1)求全班人数,并求出分数在之间的频数;(2)估计该班的平均分数,并计算频率分布直方图中间的矩形的高.
(满分12分)是等差数列的前项和,,。 (1)求的通项公式; (2)设(是实常数,且),求的前项和。
(满分12分)设命题P:关于的不等式:的解集是R,命题Q:函数的定义域为R,若P或Q为真,P且Q为假,求的取值范围。
(满分10分)已知函数 (1)求的最小正周期和单调递增区间; (2)求在区间上的取值范围。
(满分12分)已知函数。(为常数,) (1)若是函数的一个极值点,求的值; (2)求证:当时,在上是增函数; (3)若对任意的,总存在,使不等式成立,求实数的取值范围。
(满分12分)已知圆O:,点P在直线上的动点。 (1)若从P到圆O的切线长为,求P点的坐标以及两条切线所夹劣弧长; (2)若点A(-2,0),B(2,0),直线PA,PB与圆O的另一个交点分别为M,N,求证:直线MN经过定点(1,0)。