端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏.其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?
如图(1)放置两个全等的含有 30 ° 角的直角三角板 ABC 与 DEF ( ∠ B = ∠ E = 30 ° ) ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点 C 与点 E 重合时移动终止),移动过程中始终保持点 B 、 F 、 C 、 E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点 P 、 M , AC 与 DE 交于点 Q ,其中 AC = DF = 3 ,设三角板 ABC 移动时间为 x 秒.
(1)在移动过程中,试用含 x 的代数式表示 ΔAMQ 的面积;
(2)计算 x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?
“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离 y ( m ) 与步行时间 x ( min ) 之间的函数关系式如图中折线段 AB - BC - CD 所示.
(1)小丽与小明出发 min 相遇;
(2)在步行过程中,若小明先到达甲地.
①求小丽和小明步行的速度各是多少?
②计算出点 C 的坐标,并解释点 C 的实际意义.
如图,在 ΔABC 中, ∠ B = 90 ° ,点 D 为 AC 上一点,以 CD 为直径的 ⊙ O 交 AB 于点 E ,连接 CE ,且 CE 平分 ∠ ACB .
(1)求证: AE 是 ⊙ O 的切线;
(2)连接 DE ,若 ∠ A = 30 ° ,求 BE DE .
某家庭记录了未使用节水龙头20天的日用水量数据(单位: m 3 ) 和使用了节水龙头20天的日用水量数据,得到频数分布表如下:
未使用节水龙头20天的日用水量频数分布表:
日用水量 / m 3
0 ⩽ x < 0 . 1
0 . 1 ⩽ x < 0 . 2
0 . 2 ⩽ x < 0 . 3
0 . 3 ⩽ x < 0 . 4
0 . 4 ⩽ x < 0 . 5
频数
0
4
2
10
使用了节水龙头20天的日用水量频数分布表:
6
8
(1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;
(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)
如图,在 ▱ ABCD 中,点 E 是 AD 的中点,连接 CE 并延长,交 BA 的延长线于点 F .求证: FA = AB .