(本小题满分16分)如图,椭圆(a>b>0)的上、下两个顶点为A、B,直线l:,点P是椭圆上异于点A、B的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为,BP所在的直线的斜率为.若椭圆的离心率为,且过点.(1)求的值;(2)求MN的最小值;(3)随着点P的变化,以MN为直径的圆是否恒过定点,若过定点,求出该定点,如不过定点,请说明理由.
在数列中,,且前项的算术平均数等于第项的倍. (1)写出此数列的前项; (2)归纳猜想的通项公式,并用数学归纳法证明.
已知函数(m为常数,且m>0)有极大值9. (1)求m的值; (2)若斜率为-5的直线是曲线的切线,求此直线方程.
已知、、,,求证
若复数,求实数使成立.(其中为的共轭复数)
(本小题满分13分) (Ⅰ)求a2,a3,a4 (Ⅱ)猜想an;(不用证明)