(本小题满分16分)如图,椭圆(a>b>0)的上、下两个顶点为A、B,直线l:,点P是椭圆上异于点A、B的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为,BP所在的直线的斜率为.若椭圆的离心率为,且过点.(1)求的值;(2)求MN的最小值;(3)随着点P的变化,以MN为直径的圆是否恒过定点,若过定点,求出该定点,如不过定点,请说明理由.
.(本题满分10分) 已知函数()在一个周期内的图象如图, (Ⅰ) 求函数的解析式。 (Ⅱ)求函数的单调递增区间。
若平面内给定三个向量 (1)求。 (2)求满足的实数m,n的值。
.(本小题满分12分) 已知函数. (1)求函数在区间上的最大值、最小值; (2)已知,求证:在区间上,函数的图象在函数的图象的下方.
(本小题满分12分) 数列满足: (1)求数列的通项公式;(2)设数列的前n项和分别为An、Bn,问是否存在实数,使得为等差数列?若存在,求出的值;若不存在,说明理由。
(本小题满分12分) 一项"过关游戏"规则规定: 在第n 关要抛掷骰子n次, 若这n次抛掷所出现的点数之和大于+1 (n∈N*), 则算过关. (1)求在这项游戏中第三关过关的概率是多少? (2)若规定n≤3, 求某人的过关数ξ的期望.