如图1,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.(1)求抛物线的解析式;(2)求cos∠CAB的值和⊙O1的半径;(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.
为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表: 根据图表提供的信息,回答下列问题: (1)样本中,女生身高在E组的有2人,抽样调查了__________名女生,共抽样调查了__________名学生; (2) 补全条形统计图; (3)已知该校共有男生400人,女生380人,请估计身高在160≤x <170之间的学生约有多少人.
如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长交BC的延长线于点F.[w&^ww~.*zz@step.com] (1)求证:∠BDF=∠F; (2)如果CF=1,sinA=,求⊙O的半径.
如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G (1)求证:四边形DEBF是平行四边形; (2)如果∠G=90°,∠C=60°,BC=2,求四边形DEBF的面积.
关于的一元二次方程. (1)求证:方程有两个不相等的实数根; (2)为何整数时,此方程的两个根都为正整数.
列方程或方程组解应用题: 为了进一步落实“北京市中小学课外活动计划”,某校计划用4000元购买乒乓球拍,用6000元购买羽毛球拍,且购买的乒乓球拍与羽毛球拍的数量相同.已知一副羽毛球拍比一副乒乓球拍贵40元,求一副乒乓球拍和一副羽毛球拍各是多少元.