如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数。例如,展开式中的系数1、2、1恰好对应图中第三行的数字;再如,展开式中的系数1、3、3、1恰好对应图中第四行的数字。请认真观察此图,写出(a+b)4的展开式,(a+b)4= ▲ .
已知x=3是方程11﹣2x=ax﹣1的解,则a= .
方程﹣2x=x的解是 .
将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),数轴上的两点A、B恰好与刻度尺上的“0cm”和“7cm”分别对应,若点A表示的数为﹣2.3,则点B表示的数应为 .
去括号并合并同类项:2a﹣(5a﹣3)= .
将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=41°,∠2=51°,那么∠3的度数等于 .