(本小题满分12分) 如图所示, 四棱锥P-ABCD的底面是边长为1的正方形,PA^CD,PA = 1, PD=,E为PD上一点,PE = 2ED. (Ⅰ)求证:PA^平面ABCD; (Ⅱ)求二面角D-AC-E的余弦值; (Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.
设是首项为,公差为的等差数列(d≠0),是其前项和.记bn=,,其中为实数.(1) 若,且,,成等比数列,证明:Snk=n2Sk(k,n∈N+);(2) 若是等差数列,证明:.
设数列的前项和为.已知,=an+1-n2-n-()(1) 求的值;(2) 求数列的通项公式;(3) 证明:对一切正整数,有++…+<.
已知等差数列{an}满足a2=0,a6+a8=-10(1)求数列{an}的通项公式;(2)求数列{}的前n项和.
已知函数f(x)=(2cos2x-1)sin2x+cos4x(1)求f(x)的最小正周期及最大值。(2)设A,B,C为△ABC的三个内角,若cosB=,f()=-,且角A为钝角,求sinC
已知抛物线C1:x2=y,圆C2:x2+(y-4)2=1的圆心为点M(1)求点M到抛物线C1的准线的距离;(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程