已知,在矩形ABCD中,AB=4,BC=2,点M为边BC的中点,点P为边CD上的动点(点P异于C、D两点)。连接PM,过点P作PM的垂线与射线DA相交于点E(如图)。设CP=x,DE=y。(1)写出y与x之间的函数关系式 ▲ ;(2)若点E与点A重合,则x的值为 ▲ ;(3)是否存在点P,使得点D关于直线PE的对称点D′落在边AB上?若存在,求x的值;若不存在,请说明理由。
(本题8分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?
(本题8分)如图,在中,E、F为对角线BD上的两点. (1)若AE⊥BD,CF⊥BD,证明BE=DF. (2)若AE=CF,能否说明BE=DF?若能,请说明理由;若不能,请画出反例.
解方程组(每题4分,共16分) (1)x2-5x-6=0 (2)3x2-4x-1=0; (3)x(x-1)=3-3x; (4)xx+1=0
如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点. (1)求直线y=kx+3的解析式; (2)当点C运动到什么位置时△AOC的面积是6; (3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由.
在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2). (1)画出△ABC关于y轴对称的△A1B1C1; (2)画出△ABC关于原点O成中心对称的△A2B2C2.