已知椭圆的离心率为=,椭圆上的点到两焦点的距离之和为12,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点.点在椭圆上,且位于轴的上方,.(I) 求椭圆的方程;(II)求点的坐标;(III) 设是椭圆长轴AB上的一点,到直线AP的距离等于,求椭圆上的点到点的距离的最小值.
设, (1)若,求的值; (2)求的值.
若集合,且,求实数的取值集合.
证明“0≤a≤”是“函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数”的充分不必要条件.
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图: (1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a,b的值; (3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
如图,在三棱柱中,侧棱垂直于底面,,,、分别为、的中点. (1)求证:平面平面; (2)求证:平面; (3)求三棱锥的体积.