已知关于的一元二次方程.(1)求证:当取不等于l的实数时,此方程总有两个实数根.(2)若是此方程的两根,并且,直线:交轴于点A,交轴于点B,坐标原点O关于直线的对称点O′在反比例函数的图象上,求反比例函数的解析式.(3)在(2)的成立的条件下,将直线绕点A逆时针旋转角,得到直线′,′交轴于点P,过点P作轴的平行线,与上述反比例函数的图象交于点Q,当四边形APQO′的面积为时,求角的值.
某足球协会举办了一次足球联赛,记分规则是:胜一场得3分,平一场得1分,负一场得0分.当比赛进行到12轮结束(每队均需比赛12场)时,甲队得分是19分,请你通过计算分析甲队胜几场、平几场、负几场?
已知方程组的解是一对正数. (1)求a的取值范围;(2)化简:+.
,先阅读,再解题. 解不等式:>0. 解:根据两数相除,同号得正,异味号得负,得 ①>0或②解不等式组①,得x>3,解不等式组②,得x<-. 所以原不等式的解集为x>3或x<-. 参照以上解题过程所反映的解题思想方法,试解不等式:<0.
关于x,y的方程组的解满足,求m的最小整数值.
已知满足不等式5-3x≤1的最小正整数是关于x的方程(a+9)x=4(x+1)的解,求代数式a2-的值.