已知13 =" 1" =×12×22, 13+23=9=×22×32,13 + 23 + 33 =" 36" =×32×42, …,按照这个规律完成下列问题:(1)13+23+33+43+53=________=× ( )2 × ( )2(2)猜想:13+23+33+…+n3=___________(3)利用(2)中的结论计算:(写出计算过程)113+123 + 313+143 + 153+163 + ……+393+403.
如图(1),在矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,如图(2)以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t>0). (1)如图(3),当等边△EFG的边FG恰好经过点C时,求运动时间t的值; (2)如图(4),当等边△EFG的顶点G恰好落在CD边上时,求运动时间t的值; (3)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请求出S与t之间的函数关系式,并写出相应的自变量的取值范围.
如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF. (1)若∠FGB=∠FBG,求证:BF是⊙O的切线; (2)若tan∠F=,CD=a,请用a表示⊙O的半径; (3)求证:GF2-GB2=DF•GF.
如图抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C(0,-3),顶点D坐标为(-1,-4). (1)求抛物线的解析式; (2)如题图(1),求点A、B的坐标,并直接写出不等式ax2+bx+c>0的解集; (3)如题图(2),连接BD、AD,点P为线段AB上一动点,过点P作直线PQ∥BD交线段AD于点Q,求△PQD面积的最大值.
我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩分成四组,绘成了如下尚不完整的统计图表.
根据图表信息,回答下列问题: (1)参加活动选拔的学生共有 人;表中m= ,n= ; (2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩; (3)将第一组中的4名学生记为A、B、C、D,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A和B的概率.
某天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共40kg到菜市场去卖,黄瓜和土豆这天的批发价和零售价(单位:元/kg)如下表所示:
(1)他当天购进黄瓜和土豆各多少千克? (2)如果黄瓜和土豆全部卖完,他能赚多少钱?