有A、B两个不透明的布袋,A袋中有两个完全相同的小球,分别标有数字0和;B袋中有三个完全相同的小球,分别标有数字、0和1.小明从A袋中随机取出一个小球,记录标有的数字为x,再从B袋中随机取出一个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).⑴写出点Q所有可能的坐标;⑵求点Q在x上的概率;⑶在平面直角坐标系xOy中,⊙O的半径是2,求过点Q能作⊙O切线的概率.
(1)如图1,4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是2cm,正方形ABCD的4个顶点A、B、C、D分别在l1、l3、l4、l2上,求该正方形的面积; (2)如图2,把一张矩形卡片ABCD放在每格宽度为18mm的横格纸中,恰好四个顶点都在横格线上,已知∠1=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
(1)如图1,已知⊙O的半径是4,△ABC内接于⊙O,AC=4. ①求∠ABC的度数; ②已知AP是⊙O的切线,且AP=4,连接PC.判断直线PC与⊙O的位置关系,并说明理由; (2)如图2,已知▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O内,延长BC交⊙O于点E,连接DE.求证:DE=DC.
从南京站开往上海站的一辆和谐号动车,中途只停靠苏州站,甲、乙、丙3名互不相识的旅客同时从南京站上车. (1)求甲、乙、丙三名旅客在同一个站下车的概率; (2)求甲、乙、丙三名旅客中至少有一人在苏州站下车的概率.
(1)解不等式组; (2)先化简,再求值:,其中a是方程x2+x=6的一个根.
(1)计算:-32+(1-π)0+(-)-2; (2)因式分解:3x2y-18xy2+27y3.