(本小题满分12分)已知函数在处取得极值为2,设函数图象上任意一点处的切线斜率为k。(1)求k的取值范围;(2)若对于任意,存在k,使得,求证:
已知函数.(1)若,令函数,求函数在上的极大值、极小值;(2)若函数在上恒为单调递增函数,求实数的取值范围.
已知曲线的极坐标方程是ρ=2,以极点为原点,极轴为轴的正半轴建立平面直角坐标系(1) 写出曲线的直角坐标方程;(2)若把上各点的坐标经过伸缩变换后得到曲线,求曲线上任意一点到两坐标轴距离之积的最大值.
设不等式的解集为(1)求集合; (2)试比较
已知圆方程为 (1)求圆心轨迹的参数方程和普通方程;(2)点是(1)中曲线上的动点,求的取值范围.
已知复数在复平面内表示的点为A,实数m取什么值时,(1)复数z为实数?(2)复数z为纯虚数?(3)点A位于复平面的第三象限?