如图,在△ABC中,∠C=90°,BC=8,AB=10,O为BC上一点,以O为圆心,OB为半径作半圆与BC边、AB边分别交于点D、E,连接DE。 (1)若BD=6,求线段DE的长; (2)过点E作半圆O的切线,交AC于点F, 证明:AF=EF。
如图,在四棱锥P—ABCD中,底面ABCD是边长为4的菱形,且,菱形ABCD的两条对角线的交点为0,PA=PC,PB=PD,且PO=3.点E是线段PA的中点,连接EO、EB、EC. (I)证明:直线OE//平面PBC; (II)求二面角E-BC-D的大小
已知ΔABC中,内角A、B、C所对边的长分别是a、b、c,且点在直线x—y=(a—b) sinB上 (I)求角C的大小; (II)若,且A<B,求的值.
已知函数在其定义域上满足:, ①函数的图象是否是中学对称图形?若是,请指出其对称中心(不证明) ②当时,求的取值范围 ③若,数列满足,那么若正整数N满足n>N时,对所有适合上述条件的数列,恒成立,求最小的N。
1)在平面直角坐标系中,已知某点,直线.求证:点P到直线的距离 2)已知抛物线C: 的焦点为F,点P(2,0),O为坐标原点,过P的直线与抛物线C相交于A,B两点,若向量在向量上的投影为n,且,求直线的方程。
已知数列是公差为1的等差数列,是公比为2的等比数列,分别是数列和前n项和,且 ①分别求,的通项公式。 ②若,求n的范围 ③令,求数列的前n项和。