已知二次函数y=-x2+4x+5图像交x轴于点A、B,交y轴于点C,点D是该函数图像上一点,且点D的横坐标为4,连BD,点P是AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).(1)求点B,C,D的坐标及射线AD的解析式;(2)在AB上是否存在点P,使⊿OCM为等腰三角形?若存在,求正方形PQMN的边长;若不存在,请说明理由;(3)设正方形PQMN与⊿ABD重叠部分面积为s,求s与t的函数关系式.
如图,四边形DEFG是ΔABC的内接矩形,如果ΔABC的高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm,求y关于x的函数关系式.
已知:如图,BC为半圆的直径,O为圆心,D是弧AD的中点,四边形ABCD的对角线AC、BD交于点E。求证:⊿ABE∽⊿DBC。
已知矩形ABCD中,E为DC的中点,连接BE,AF⊥BE于点F,AB=10cm,BC=12cm,求AF长。
如图,BD、CE为⊿ABC的高,求证⊿AED=⊿ACB.
如图,点C、D在线段AB上,⊿PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,⊿ACP∽⊿PDB?(2)当⊿ACP∽⊿PDB时,求⊿APB的度数.