太仓人杰地灵,为了了解学生对家乡历史文化名人的知晓情况,某校对部分学生进行了随机抽样调查,并将调查结果绘制成如图所示统计图的一部分. 根据统计图中的信息,回答下列问题: (1)本次抽样调查的样本容量是 _; (2)在扇形统计图中,“了解很少”所在扇形的圆心角是 度; (3)若全校共有学生1300人,那么该校约有多少名学生“基本了解”太仓的历史文化名人?
(本题8分) (1)计算:; (2)解不等式:
如图,在Rt△ABC中,∠C=90°,BC=3,AC=4.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y. (1)求证:△DHQ∽△ABC; (2)求y关于x的函数解析式; (3)当x为何值时,△HDE为等腰三角形?
将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,如图①,我们将这种变换记为[θ,n]. (1)如图①,对△ABC作变换[50°,]得△AB′C′,则S△AB′C′:S△ABC=;直线BC与直线BC′所夹的锐角为度; (2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ 和n的值; (3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ 和n的值.
如图所示,AC⊥AB,,AC=2,点D是以AB为直径的半圆O上一动点,DE⊥CD交直线AB于点E,设. (1)当时,求弧BD的长; (2)当时,求线段BE的长; (3)若要使点E在线段BA的延长线上,则的取值范围是_________.(直接写出答案)
已知:如图,△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°. (1)求证:AD是⊙O的切线; (2)若OD⊥AB,BC=4,求AD的长.