以下两图是一个等腰Rt△ABC和一个等边△DEF,要求把它们分别分割成三个三角形, 使分得的三个三角形互相没有重叠部分,并且△ABC中分得的三个小三角形和DEF中分得的三个小三角形分别相似.请画出两个三角形中的分割线,标出分割得到的小三角形中两个角的度数.
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及; (3)是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.
我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为0.66米,求:⑴ 装饰画与墙壁的夹角∠CAD的度数(精确到1°);⑵ 装饰画顶部到墙壁的距离DC(精确到0.01米).
某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中.准备在形如Rt的四个全等三角形内种植红色花草,在形如Rt△EMH的四个全等三角形内种植黄色花草,在正方形内种植紫色花草,每种花草的价格如下表:
设的长为米,正方形的面积为平方米,买花草所需的费用为元,解答下列问题:(1)与之间的函数关系式为 ;(2)求与之间的函数关系式,并求所需的最低费用是多少元;(3)当买花草所需的费用最低时,求的长.
如图在Rt△ABC中,∠ACB=90º,sinA=, 点D、E分别在AB、AC边上,DE⊥AC,DE=2,DB="9," 求DC的长.
如图,已知二次函数的图象与坐标轴交于点A(-1, 0)和点 B(0,-5). (1)求该二次函数的解析式; (2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.