(本小题满分14分) 在平面直角坐标系中,点为动点,、分别为椭圆的左右焦点,已知为等腰三角形.(Ⅰ)求椭圆的离心率;(Ⅱ)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程.
(本小题满分12分)在中,,.求角的值;设,求.
(本小题满分14分)已知函数(其中,e是自然对数的底数,e=2.71828…).(Ⅰ)当时,求函数的极值;(Ⅱ)若恒成立,求实数a的取值范围;(Ⅲ)求证:对任意正整数n,都有.
(本小题满分13分)已知椭圆Ω:的焦距为,且经过点.(Ⅰ)求椭圆Ω的方程;(Ⅱ)A是椭圆Ω与轴正半轴的交点, 椭圆Ω上是否存在两点M、N,使得△AMN是以A为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.
(本小题满分12分)等差数列的前n项和为,数列是等比数列,满足,, ,.(Ⅰ)求数列和的通项公式;(Ⅱ)令设数列的前n项和,求.
(本小题满分12分)四棱锥S-ABCD中,侧面SAD是正三角形,底面ABCD是正方形,且平面SAD⊥平面ABCD,M、N分别是AB、SC的中点.(Ⅰ)求证:MN∥平面SAD;(Ⅱ)求二面角S-CM-D的余弦值.