小明在学习了概率的有关知识后,迫不及待地想把所学知识用于实践,于是和小慧一起玩纸牌游戏。下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张。小慧说:“若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.”(注:Q就是12)(1)请用画树状图或列表法表示出两人抽牌可能出现的所有结果;(2)若按小慧说的规则进行游戏,这个游戏公平吗?请说明理由。
若从矩形一边上的点到对边的视角是直角,即称该点是直角点。例如,如图的矩形中,点在边上,连接,,则点为直角点。若点分别为矩形的边上的直角点,且,,则的长为
以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是的切线,连接OQ. 求的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被截得的弦长.
将一块三角板的直角顶点放在正方形ABCD的对角线交点位置,两边与对角线重合如图甲,将这块三角板绕直角顶点顺时针方向旋转(旋转角小于90°)如图乙.⑴试判断△ODE和△OCF是否全等,并证明你的结论.⑵若正方形ABCD的对角线长为10,试求三角板和正方形重合部分的面积.
已知是⊙的直径,是⊙的切线,是切点,与⊙交于点.(1)如图①,若,,求的长(结果保留根号);(2)如图②,若为的中点,求证:直线是⊙的切线.
将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上。⑴从中随机抽取两张卡片,求卡片正面上的数字之和大于4的概率;⑵若先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率(请用树状图或列表法加以说明).