(本小题满分12分)某单位为了提高员工素质,举办了一场跳绳比赛,其中男员工12人,女员工18人,其成绩编成如图所示的茎叶图(单位:分),分数在175分以上(含175分)者定为“运动健将”,并给予特别奖励,其他人员则给予“运动积极分子”称号.⑴ 若用分层抽样的方法从“运动健将”和“运动积极分子”中抽取10人,然后再从这10人中选4人,求至少有1人是“运动健将”的概率;⑵ 若从所有“运动健将”中选3名代表,用表示所选代表中女“运动健将”的人数,试写出的分布列,并求的数学期望.
已知椭圆,是否存在斜率为k(k≠0)的直线,使与椭圆交于不同的两点A、B,且线段的垂直平分线经过点M(0,-1),求斜率k的取值范围.
中心在坐标原点,焦点在x轴上的椭圆,它的离心率为,与直线x+y-1=0相交于两点M、N,且以为直径的圆经过坐标原点.求椭圆的方程.
已知点A,动点在双曲线上运动,且,求点P的轨迹方程.
过抛物线的焦点F作倾斜角为的直线交抛物线于A、B两点,若线段AB的长为8,求此抛物线的方程.
若直线与双曲线有且仅有一个公共点,求实数的值.