在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P与B、C不重合),过点P作AP⊥PE,垂足为P,PE交CD于点E.(1)连接AE,当△APE与△ADE全等时,求BP的长;(2)若设BP为x,CE为y,试确定y与x的函数关系式.当x取何值时,y的值最大?最大值是多少?(3)若PE∥BD,试求出此时BP的长.
如图,四边形内接于⊙,是⊙的直径,,垂足为,平分. (1)求证:是⊙的切线; (2)若,求的长.
四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上. (1)求随机抽取一张卡片,恰好得到数字2的概率; (2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.
如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1). (1)画出“基本图形”关于原点O对称的四边形A1B1C1D1,并求出A1,B1,C1,D1的坐标. A1(,),B1(,),C1(,),D1(,) ; (2)画出“基本图形”关于x轴的对称图形A2B2C2D2 ; (3)画出四边形A3B3C3D3,使之与前面三个图形组成的图形既是中心对称图形又是轴对称图形.
解方程:4x2-3x-1=0
抛物线经过点A(4,0),B(2,2),连结OB,AB. (1)求、的值; (2)求证:△OAB是等腰直角三角形; (3)将△OAB绕点O按顺时针方向旋转l35°得到△OA′B′,写出A′B′的中点P的出标.试判断点P是否在此抛物线上,并说明理由.