已知抛物线与轴交于点A(,0),(1)直接写出抛物线与轴的另一个交点B的坐标;(2)若直线过抛物线顶点M及抛物线与轴的交点(0,3).① 求直线MC所对应的函数关系式;② 若直线MC与轴的交点为,在抛物线上是否存在点,使得△NPC是以NC为直角边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.
(本小题满分8分)如图1,OA、OB是⊙O的半径,且OA⊥OB,点C是OB延长线上任意一点, 过点C作CD切⊙O于点D,连结AD交DC于点E. (1)求证:CD=CE; (2)如图2,若将图1中的半径OB所在直线向上平移,交OA于F,交⊙O于B′,其他条件不变, 求证:∠C=2∠A; (3)如图3,在(2)的条件下,若CD=6.5,AE=3,sinA=,求⊙O半径OA的长.
(本小题满分8分)如图,A(2,1)是矩形OCBD的对角线OB上的一点,点E在BC上,双曲线y=经过点A,交BC于点E,交BD于点F,若CE=. (1)求双曲线的解析式; (2)求点F的坐标; (3)连接EF、DC,求证:EF∥DC.
(本小题满分6分)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示. 根据图中的数据(单位:m),解答下列问题: (1)用含x、y的代数式表示地面总面积; (2)小王发现客厅面积比卫生间面积大21m2,且地面总面积是卫生间面积的15倍.若铺1m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?
(本小题满分6分)如上图,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=90°,AB与CE交于F,ED与AB、BC分别交于M、H. (1)求证:CF=CH; (2)如下图,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.
(本小题满分6分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元. (1)该顾客至多可得到 元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.