已知二次函数在和时的函数值相等。(1)求二次函数的解析式;(2)若一次函数的图象与二次函数的图象都经过点A,求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移个单位后得到的图象记为C,同时将(2)中得到的直线向上平移n个单位。请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围。
已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△ABC. (1)在图中画出△ABC; (2)写出点A、B、C的坐标; (3)在轴上是否存在一点P,使得△PBC与△ABC面积相等?若存在,写出点P的坐标;若不存在,说明理由.
小红和小凤两人在解关于、的方程组时,小红只因看错了系数,得到方程组的解为;小凤只因看错了系数,得到方程组的解为;求、的值和原方程组的解.
定义运算:对于任意实数、,都有=,等式右边是通常的加法、减法、及乘法运算,比如:25=2×(2-5)+1=2×(-3)+1=-6+1=-5.若3的值小于13,求的取值范围,并在如图所示的数轴上表示出来.
如图,AB∥CD,直线MN分别交AB、CD于E、F,EG平分∠AEN交CD于点G,∠MEB=80°,求∠EGD的度数.
如图,抛物线y=ax2+bx(a≠0)经过点A(2,0),点B(3,3),BC⊥x轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(﹣4,0),点F与原点重合 (1)求抛物线的解析式并直接写出它的对称轴; (2)△DEF以每秒1个单位长度的速度沿x轴正方向移动,运动时间为t秒,当点D落在BC边上时停止运动,设△DEF与△OBC的重叠部分的面积为S,求出S关于t的函数关系式; (3)点P是抛物线对称轴上一点,当△ABP时直角三角形时,请直接写出所有符合条件的点P坐标.