如图①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分别是AB、AC上的两点,且GF∥BC,AF=2,BG=4。(1)求梯形BCFG的面积;(2)有一梯形DEFG与梯形BCFG重合,固定△ABC,将梯形DEFG向右运动,直到点D与点C重合为止,如图②.①若某时段运动后形成的四边形BDG'G中,DG⊥BG',求运动路程BD的长,并求此时的值;②设运动中BD的长度为x,试用含x的代数式表示出梯形DEFG与Rt△ABC重合部分的面积S。
如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连结BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.
已知:如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长。
如图,△ABC中,∠A=30°,=90°,BE平分∠ABC,AC=9cm,求CE的长。
如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.求证:AD平分∠BAC.
如图,点B,D,C,F在一条直线上,且BC=FD,AB=EF. (1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是; (2)添加了条件后,证明△ABC≌△EFD。