一个盒子中装有4张形状大小都相同的卡片,卡片上的编号分别为1、、、,现从盒子中随机抽取一张卡片,将其编号记为,再从剩下的三张中任取一张,将其编号记为,这样就确定了点的一个坐标,记为.(1)求第一次抽到编号为的概率;(2)请用树状图或列表法,求点在第四象限的概率.
先化简,再求值:(x+2)(3x﹣1)﹣3,其中x=﹣1.
解不等式组:.
(1)填空: ①= , ②= , ③(-3y)()= , ④ (2x﹣1)=2﹣x. (2)计算: ①(x+5y)(2x﹣y), ②
如图,在平面直角坐标系中,直线AB与x轴、y轴的正半轴分别交于点A,B,直线CD与x轴正半轴、y轴负半轴分别交于点D,C,AB与CD相交于点E,点A,B,C,D的坐标分别为(8,0)、(0,6)、(0,﹣3)、(4,0),点M是OB的中点,点P在直线AB上,过点P作PQ∥y轴,交直线CD于点Q,设点P的横坐标为m.(1)求直线AB,CD对应的函数关系式;(2)用含m的代数式表示PQ的长;(3)若以点M,O,P,Q为顶点的四边形是矩形,请直接写出相应的m的值.
如图,点E,F分别在正方形ABCD的边DA,DC延长线上,且AE﹣CF,连接BE,BF,过点E作EG∥BF,过点F作FG∥BE,EG,FG交于点G.(1)求证:△ABE≌△CBF;(2)求证:四边形BEGF是菱形;(3)若AD=3AE=3,求四边形BEGF的周长.