(本小题满分12分)已知椭圆C:的离心率为,A,B分别为椭圆的长轴和短轴的端点,M为AB的中点,O为坐标原点,且.(Ⅰ)求椭圆的方程;(Ⅱ)过的直线与椭圆交于P、Q两点,求POQ的面积的最大时直线的方程。
已知函数在处取得极值,其中为常数. (1)求的值; (2)求函数的单调区间; (3)若对任意,不等式恒成立,求的取值范围.
设在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片,标号分别记为,设随机变量. (1)写出的可能取值,并求随机变量的最大值; (2)求事件“取得最大值”的概率; (3)求的分布列和数学期望与方差.
某家具城进行促销活动,促销方案是:顾客每消费满1000元,便可以获得奖券一张,每张奖券 中奖的概率为,若中奖,则家具城返还顾客现金1000元,某顾客购买一张价格为3400元的餐桌, 得到3张奖券,设该顾客购买餐桌的实际支出为元; (I)求的所有可能取值; (II)求的分布列; (III)求的期望E();
过点A(6,4)作曲线的切线l. (1)求切线l的方程; (2)求切线l,x轴及曲线所围成的封闭图形的面积S.
在三棱锥中,是边长为的正三角形,平面平面,,、分别为、的中点, (1)证明:; (2)求二面角的大小; (3)求点到平面的距离.