用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是( )
- 8 的立方根是 ( )
2
- 2
± 2
- 2 2
抛物线 y = x 2 + bx + 3 的对称轴为直线 x = 1 .若关于 x 的一元二次方程 x 2 + bx + 3 - t = 0 ( t 为实数)在 - 1 < x < 4 的范围内有实数根,则 t 的取值范围是 ( )
2 ⩽ t < 11
t ⩾ 2
6 < t < 11
2 ⩽ t < 6
如图,四边形 ABCD 内接于 ⊙ O , AB 为直径, AD = CD ,过点 D 作 DE ⊥ AB 于点 E ,连接 AC 交 DE 于点 F .若 sin ∠ CAB = 3 5 , DF = 5 ,则 BC 的长为 ( )
8
10
12
16
关于 x 的一元二次方程 x 2 + 2 mx + m 2 + m = 0 的两个实数根的平方和为12,则 m 的值为 ( )
m = - 2
m = 3
m = 3 或 m = - 2
m = - 3 或 m = 2
如图,在矩形 ABCD 中, AB = 2 , BC = 3 ,动点 P 沿折线 BCD 从点 B 开始运动到点 D .设运动的路程为 x , ΔADP 的面积为 y ,那么 y 与 x 之间的函数关系的图象大致是 ( )